Immutability模式:如何利用不变性解决并发问题?
# 28 | Immutability模式:如何利用不变性解决并发问题?
我们曾经说过,“多个线程同时读写同一共享变量存在并发问题”,这里的必要条件之一是读写,如果只有读,而没有写,是没有并发问题的。
解决并发问题,其实最简单的办法就是让共享变量只有读操作,而没有写操作。这个办法如此重要,以至于被上升到了一种解决并发问题的设计模式:不变性(Immutability)模式。所谓不变性,简单来讲,就是对象一旦被创建之后,状态就不再发生变化。换句话说,就是变量一旦被赋值,就不允许修改了(没有写操作);没有修改操作,也就是保持了不变性。
# 快速实现具备不可变性的类
实现一个具备不可变性的类,还是挺简单的。将一个类所有的属性都设置成 final 的,并且只允许存在只读方法,那么这个类基本上就具备不可变性了。更严格的做法是这个类本身也是 final 的,也就是不允许继承。因为子类可以覆盖父类的方法,有可能改变不可变性,所以推荐你在实际工作中,使用这种更严格的做法。
Java SDK 里很多类都具备不可变性,只是由于它们的使用太简单,最后反而被忽略了。例如经常用到的 String 和 Long、Integer、Double 等基础类型的包装类都具备不可变性,这些对象的线程安全性都是靠不可变性来保证的。如果你仔细翻看这些类的声明、属性和方法,你会发现它们都严格遵守不可变类的三点要求:类和属性都是 final 的,所有方法均是只读的。
看到这里你可能会疑惑,Java 的 String 方法也有类似字符替换操作,怎么能说所有方法都是只读的呢?我们结合 String 的源代码来解释一下这个问题,下面的示例代码源自 Java 1.8 SDK,我略做了修改,仅保留了关键属性 value[] 和 replace() 方法,你会发现:String 这个类以及它的属性 value[] 都是 final 的;而 replace() 方法的实现,就的确没有修改 value[],而是将替换后的字符串作为返回值返回了。
public final class String {
private final char value[];
// 字符替换
String replace(char oldChar,
char newChar) {
// 无需替换,直接返回 this
if (oldChar == newChar){
return this;
}
int len = value.length;
int i = -1;
/* avoid getfield opcode */
char[] val = value;
// 定位到需要替换的字符位置
while (++i < len) {
if (val[i] == oldChar) {
break;
}
}
// 未找到 oldChar,无需替换
if (i >= len) {
return this;
}
// 创建一个 buf[],这是关键
// 用来保存替换后的字符串
char buf[] = new char[len];
for (int j = 0; j < i; j++) {
buf[j] = val[j];
}
while (i < len) {
char c = val[i];
buf[i] = (c == oldChar) ?
newChar : c;
i++;
}
// 创建一个新的字符串返回
// 原字符串不会发生任何变化
return new String(buf, true);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
通过分析 String 的实现,你可能已经发现了,如果具备不可变性的类,需要提供类似修改的功能,具体该怎么操作呢?做法很简单,那就是创建一个新的不可变对象,这是与可变对象的一个重要区别,可变对象往往是修改自己的属性。
所有的修改操作都创建一个新的不可变对象,你可能会有这种担心:是不是创建的对象太多了,有点太浪费内存呢?是的,这样做的确有些浪费,那如何解决呢?
# 利用享元模式避免创建重复对象
如果你熟悉面向对象相关的设计模式,相信你一定能想到享元模式(Flyweight Pattern)。利用享元模式可以减少创建对象的数量,从而减少内存占用。Java 语言里面 Long、Integer、Short、Byte 等这些基本数据类型的包装类都用到了享元模式。
下面我们就以 Long 这个类作为例子,看看它是如何利用享元模式来优化对象的创建的。
享元模式本质上其实就是一个对象池,利用享元模式创建对象的逻辑也很简单:创建之前,首先去对象池里看看是不是存在;如果已经存在,就利用对象池里的对象;如果不存在,就会新创建一个对象,并且把这个新创建出来的对象放进对象池里。
Long 这个类并没有照搬享元模式,Long 内部维护了一个静态的对象池,仅缓存了 [-128,127] 之间的数字,这个对象池在 JVM 启动的时候就创建好了,而且这个对象池一直都不会变化,也就是说它是静态的。之所以采用这样的设计,是因为 Long 这个对象的状态共有 264 种,实在太多,不宜全部缓存,而 [-128,127] 之间的数字利用率最高。下面的示例代码出自 Java 1.8,valueOf() 方法就用到了 LongCache 这个缓存,你可以结合着来加深理解。
Long valueOf(long l) {
final int offset = 128;
// [-128,127] 直接的数字做了缓存
if (l >= -128 && l <= 127) {
return LongCache
.cache[(int)l + offset];
}
return new Long(l);
}
// 缓存,等价于对象池
// 仅缓存 [-128,127] 直接的数字
static class LongCache {
static final Long cache[]
= new Long[-(-128) + 127 + 1];
static {
for(int i=0; i<cache.length; i++)
cache[i] = new Long(i-128);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
前面我们在《13 | 理论基础模块热点问题答疑》中提到“Integer 和 String 类型的对象不适合做锁”,其实基本上所有的基础类型的包装类都不适合做锁,因为它们内部用到了享元模式,这会导致看上去私有的锁,其实是共有的。例如在下面代码中,本意是 A 用锁 al,B 用锁 bl,各自管理各自的,互不影响。但实际上 al 和 bl 是一个对象,结果 A 和 B 共用的是一把锁。
class A {
Long al=Long.valueOf(1);
public void setAX(){
synchronized (al) {
// 省略代码无数
}
}
}
class B {
Long bl=Long.valueOf(1);
public void setBY(){
synchronized (bl) {
// 省略代码无数
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# 使用 Immutability 模式的注意事项
在使用 Immutability 模式的时候,需要注意以下两点:
对象的所有属性都是 final 的,并不能保证不可变性;
不可变对象也需要正确发布。
在 Java 语言中,final 修饰的属性一旦被赋值,就不可以再修改,但是如果属性的类型是普通对象,那么这个普通对象的属性是可以被修改的。例如下面的代码中,Bar 的属性 foo 虽然是 final 的,依然可以通过 setAge() 方法来设置 foo 的属性 age。所以,在使用 Immutability 模式的时候一定要确认保持不变性的边界在哪里,是否要求属性对象也具备不可变性。
class Foo{
int age=0;
int name="abc";
}
final class Bar {
final Foo foo;
void setAge(int a){
foo.age=a;
}
}
2
3
4
5
6
7
8
9
10
11
下面我们再看看如何正确地发布不可变对象。不可变对象虽然是线程安全的,但是并不意味着引用这些不可变对象的对象就是线程安全的。例如在下面的代码中,Foo 具备不可变性,线程安全,但是类 Bar 并不是线程安全的,类 Bar 中持有对 Foo 的引用 foo,对 foo 这个引用的修改在多线程中并不能保证可见性和原子性。
//Foo 线程安全
final class Foo{
final int age=0;
final int name="abc";
}
//Bar 线程不安全
class Bar {
Foo foo;
void setFoo(Foo f){
this.foo=f;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
如果你的程序仅仅需要 foo 保持可见性,无需保证原子性,那么可以将 foo 声明为 volatile 变量,这样就能保证可见性。如果你的程序需要保证原子性,那么可以通过原子类来实现。下面的示例代码是合理库存的原子化实现,你应该很熟悉了,其中就是用原子类解决了不可变对象引用的原子性问题。
public class SafeWM {
class WMRange{
final int upper;
final int lower;
WMRange(int upper,int lower){
// 省略构造函数实现
}
}
final AtomicReference<WMRange>
rf = new AtomicReference<>(
new WMRange(0,0)
);
// 设置库存上限
void setUpper(int v){
while(true){
WMRange or = rf.get();
// 检查参数合法性
if(v < or.lower){
throw new IllegalArgumentException();
}
WMRange nr = new
WMRange(v, or.lower);
if(rf.compareAndSet(or, nr)){
return;
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
# 总结
利用 Immutability 模式解决并发问题,也许你觉得有点陌生,其实你天天都在享受它的战果。Java 语言里面的 String 和 Long、Integer、Double 等基础类型的包装类都具备不可变性,这些对象的线程安全性都是靠不可变性来保证的。Immutability 模式是最简单的解决并发问题的方法,建议当你试图解决一个并发问题时,可以首先尝试一下 Immutability 模式,看是否能够快速解决。
具备不变性的对象,只有一种状态,这个状态由对象内部所有的不变属性共同决定。其实还有一种更简单的不变性对象,那就是无状态。无状态对象内部没有属性,只有方法。除了无状态的对象,你可能还听说过无状态的服务、无状态的协议等等。无状态有很多好处,最核心的一点就是性能。在多线程领域,无状态对象没有线程安全问题,无需同步处理,自然性能很好;在分布式领域,无状态意味着可以无限地水平扩展,所以分布式领域里面性能的瓶颈一定不是出在无状态的服务节点上。
# 课后思考
下面的示例代码中,Account 的属性是 final 的,并且只有 get 方法,那这个类是不是具备不可变性呢?
public final class Account{
private final
StringBuffer user;
public Account(String user){
this.user =
new StringBuffer(user);
}
public StringBuffer getUser(){
return this.user;
}
public String toString(){
return "user"+user;
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。
# 精选评论
点击查看
根据文章内容,一个类具备不可变属性需要满足"类和属性都必须是 final 的,所有方法均是只读的",类的属性如果是引用型,该属性对应的类也需要满足不可变类的条件,且不能提供修改该属性的方法,
Account类的唯一属性user是final的,提供的方法是可读的,user的类型是StringBuffer,StringBuffer也是final的,这样看来,Account类是不可变性的,但是去看StringBuffer的源码,你会发现StringBuffer类的属性value是可变的<String类中的value定义:private final char value[];StringBuffer类中的value定义:char[] value;>,并且提供了append(Object object)和setCharAt(int index, char ch)修改value.
所以,Account类不具备不可变性
2
3
这段代码应该是线程安全的,但它不是不可变模式。StringBuffer只是字段引用不可变,值是可以调用StringBuffer的方法改变的,这个需要改成把字段改成String这样的不可变对象来解决。
2
//Foo 线程安全
final class Foo{
final int age=0;
final int name="abc";
}
//Bar 线程不安全
class Bar {
Foo foo;
void setFoo(Foo f){
this.foo=f;
}
}
老师好,对foo的引用和修改在多线程环境中并不能保证原子性和可见性,这句话怎么理解,能用具体的例子说明一下吗?
2
3
4
5
6
7
8
9
10
11
12
13
这个专栏一直看到这儿,真的很棒,课后问题也很好,让我对并发编程有了一个整体的了解,之前看书一直看不懂,老师带着梳理一遍,看书也容易多了,非常感谢老师,希望老师再出专栏
不是不可变的,user 逃逸了
不具备,stringbuffer本身线程不安全
想请教老师一个问题,Long里面的内部类为什么不用final修饰,这样这个内部类不就是可以被继承修改了么?怎么保证它的不可变性呢?
// 缓存,等价于对象池
// 仅缓存 [-128,127] 直接的数字
static class LongCache {
static final Long cache[]
= new Long[-(-128) + 127 + 1];
static {
for(int i=0; i<cache.length; i++)
cache[i] = new Long(i-128);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
final StringBuffer user;
StingBuffer 是 引用 类型, 当我们说它final StingBuffer user 不可变时,实际上说的是它user指向堆内存的地址不可变, 但堆内存的user对象,通过sub append 方法实际是可变的……
2
3
思考题:不是不可变类,用下边的代码可以进行验证!(返回的对象自身提供了修改方法)
public final class Test {
public static void main(String[] args) {
Account a = new Account("小A");
System.out.println(a.getUser());
a.getUser().append("小B");
System.out.println(a.getUser());
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
虽然没有对外提供修改user的方法,但是提供了get方法返回user可以修改
我的理解是:
不具有不可变性,因为get方法返回的是user对象的引用,不是一个拷贝,所以可以改变Account类的user对象。
2
打卡。
不具备不可变性,原因是stringbuffer类存在更改user对象方法
老师五一节日快乐。
思考题 :
不可变类的三要素 :类、属性、方法都是不可变的。 思考题这个类虽然是final ,属性也是final并且没有修改的方法 , 但是 stringbuffer这个属性的内容是可变的 , 所以应该没有满足三要素中的属性不可变 , 应该不属于不可变类 。
另外老师我有个问题想问下, 我看jdk一些源码里,也用了对象做锁。 例如 我有个变量 final ConcurrentHashMap cache , 有些方法中会对 cache变量 put新的值 , 但是还有用这个对象做 synchronized(cache) 对象锁 , 这种做法对么? 如果对的话,是因为管程只判断对象的首地址没有改变的原因么 ,希望老师指点一下😁
2
3
4
5
6
7