开源实战四(中):剖析Spring框架中用来支持扩展的两种设计模式
# 85 | 开源实战四(中):剖析Spring框架中用来支持扩展的两种设计模式
上一节课中,我们学习了Spring框架背后蕴藏的一些经典设计思想,比如约定优于配置、低侵入松耦合、模块化轻量级等等。我们可以将这些设计思想借鉴到其他框架开发中,在大的设计层面提高框架的代码质量。这也是我们在专栏中讲解这部分内容的原因。
除了上一节课中讲到的设计思想,实际上,可扩展也是大部分框架应该具备的一个重要特性。所谓的框架可扩展,我们之前也提到过,意思就是,框架使用者在不修改框架源码的情况下,基于扩展点定制扩展新的功能。
前面在理论部分,我们也讲到,常用来实现扩展特性的设计模式有:观察者模式、模板模式、职责链模式、策略模式等。今天,我们再剖析Spring框架为了支持可扩展特性用的2种设计模式:观察者模式和模板模式。
话不多说,让我们正式开始今天的学习吧!
# 观察者模式在Spring中的应用
在前面我们讲到,Java、GoogleGuava都提供了观察者模式的实现框架。Java提供的框架比较简单,只包含java.util.Observable和java.util.Observer两个类。GoogleGuava提供的框架功能比较完善和强大:通过EventBus事件总线来实现观察者模式。实际上,Spring也提供了观察者模式的实现框架。今天,我们就再来讲一讲它。
Spring中实现的观察者模式包含三部分:Event事件(相当于消息)、Listener监听者(相当于观察者)、Publisher发送者(相当于被观察者)。我们通过一个例子来看下,Spring提供的观察者模式是怎么使用的。代码如下所示:
// Event事件
public class DemoEvent extends ApplicationEvent {
private String message;
public DemoEvent(Object source, String message) {
super(source);
}
public String getMessage() {
return this.message;
}
}
// Listener监听者
@Component
public class DemoListener implements ApplicationListener<DemoEvent> {
@Override
public void onApplicationEvent(DemoEvent demoEvent) {
String message = demoEvent.getMessage();
System.out.println(message);
}
}
// Publisher发送者
@Component
public class DemoPublisher {
@Autowired
private ApplicationContext applicationContext;
public void publishEvent(DemoEvent demoEvent) {
this.applicationContext.publishEvent(demoEvent);
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
从代码中,我们可以看出,框架使用起来并不复杂,主要包含三部分工作:定义一个继承ApplicationEvent的事件(DemoEvent);定义一个实现了ApplicationListener的监听器(DemoListener);定义一个发送者(DemoPublisher),发送者调用ApplicationContext来发送事件消息。
其中,ApplicationEvent和ApplicationListener的代码实现都非常简单,内部并不包含太多属性和方法。实际上,它们最大的作用是做类型标识之用(继承自ApplicationEvent的类是事件,实现ApplicationListener的类是监听器)。
public abstract class ApplicationEvent extends EventObject {
private static final long serialVersionUID = 7099057708183571937L;
private final long timestamp = System.currentTimeMillis();
public ApplicationEvent(Object source) {
super(source);
}
public final long getTimestamp() {
return this.timestamp;
}
}
public class EventObject implements java.io.Serializable {
private static final long serialVersionUID = 5516075349620653480L;
protected transient Object source;
public EventObject(Object source) {
if (source == null)
throw new IllegalArgumentException("null source");
this.source = source;
}
public Object getSource() {
return source;
}
public String toString() {
return getClass().getName() + "[source=" + source + "]";
}
}
public interface ApplicationListener<E extends ApplicationEvent> extends EventListener {
void onApplicationEvent(E var1);
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
在前面讲到观察者模式的时候,我们提到,观察者需要事先注册到被观察者(JDK的实现方式)或者事件总线(EventBus的实现方式)中。那在Spring的实现中,观察者注册到了哪里呢?又是如何注册的呢?
我想你应该猜到了,我们把观察者注册到了ApplicationContext对象中。这里的ApplicationContext就相当于GoogleEventBus框架中的“事件总线”。不过,稍微提醒一下,ApplicationContext这个类并不只是为观察者模式服务的。它底层依赖BeanFactory(IOC的主要实现类),提供应用启动、运行时的上下文信息,是访问这些信息的最顶层接口。
实际上,具体到源码来说,ApplicationContext只是一个接口,具体的代码实现包含在它的实现类AbstractApplicationContext中。我把跟观察者模式相关的代码,摘抄到了下面。你只需要关注它是如何发送事件和注册监听者就好,其他细节不需要细究。
public abstract class AbstractApplicationContext extends ... {
private final Set<ApplicationListener<?>> applicationListeners;
public AbstractApplicationContext() {
this.applicationListeners = new LinkedHashSet();
//...
}
public void publishEvent(ApplicationEvent event) {
this.publishEvent(event, (ResolvableType)null);
}
public void publishEvent(Object event) {
this.publishEvent(event, (ResolvableType)null);
}
protected void publishEvent(Object event, ResolvableType eventType) {
//...
Object applicationEvent;
if (event instanceof ApplicationEvent) {
applicationEvent = (ApplicationEvent)event;
} else {
applicationEvent = new PayloadApplicationEvent(this, event);
if (eventType == null) {
eventType = ((PayloadApplicationEvent)applicationEvent).getResolvableType();
}
}
if (this.earlyApplicationEvents != null) {
this.earlyApplicationEvents.add(applicationEvent);
} else {
this.getApplicationEventMulticaster().multicastEvent(
(ApplicationEvent)applicationEvent, eventType);
}
if (this.parent != null) {
if (this.parent instanceof AbstractApplicationContext) {
((AbstractApplicationContext)this.parent).publishEvent(event, eventType);
} else {
this.parent.publishEvent(event);
}
}
}
public void addApplicationListener(ApplicationListener<?> listener) {
Assert.notNull(listener, "ApplicationListener must not be null");
if (this.applicationEventMulticaster != null) {
this.applicationEventMulticaster.addApplicationListener(listener);
} else {
this.applicationListeners.add(listener);
}
}
public Collection<ApplicationListener<?>> getApplicationListeners() {
return this.applicationListeners;
}
protected void registerListeners() {
Iterator var1 = this.getApplicationListeners().iterator();
while(var1.hasNext()) {
ApplicationListener<?> listener = (ApplicationListener)var1.next(); this.getApplicationEventMulticaster().addApplicationListener(listener);
}
String[] listenerBeanNames = this.getBeanNamesForType(ApplicationListener.class, true, false);
String[] var7 = listenerBeanNames;
int var3 = listenerBeanNames.length;
for(int var4 = 0; var4 < var3; ++var4) {
String listenerBeanName = var7[var4];
this.getApplicationEventMulticaster().addApplicationListenerBean(listenerBeanName);
}
Set<ApplicationEvent> earlyEventsToProcess = this.earlyApplicationEvents;
this.earlyApplicationEvents = null;
if (earlyEventsToProcess != null) {
Iterator var9 = earlyEventsToProcess.iterator();
while(var9.hasNext()) {
ApplicationEvent earlyEvent = (ApplicationEvent)var9.next();
this.getApplicationEventMulticaster().multicastEvent(earlyEvent);
}
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
从上面的代码中,我们发现,真正的消息发送,实际上是通过ApplicationEventMulticaster这个类来完成的。这个类的源码我只摘抄了最关键的一部分,也就是multicastEvent()这个消息发送函数。不过,它的代码也并不复杂,我就不多解释了。这里我稍微提示一下,它通过线程池,支持异步非阻塞、同步阻塞这两种类型的观察者模式。
public void multicastEvent(ApplicationEvent event) {
this.multicastEvent(event, this.resolveDefaultEventType(event));
}
public void multicastEvent(final ApplicationEvent event, ResolvableType eventType) {
ResolvableType type = eventType != null ? eventType : this.resolveDefaultEventType(event);
Iterator var4 = this.getApplicationListeners(event, type).iterator();
while(var4.hasNext()) {
final ApplicationListener<?> listener = (ApplicationListener)var4.next();
Executor executor = this.getTaskExecutor();
if (executor != null) {
executor.execute(new Runnable() {
public void run() {
SimpleApplicationEventMulticaster.this.invokeListener(listener, event);
}
});
} else {
this.invokeListener(listener, event);
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
借助Spring提供的观察者模式的骨架代码,如果我们要在Spring下实现某个事件的发送和监听,只需要做很少的工作,定义事件、定义监听器、往ApplicationContext中发送事件就可以了,剩下的工作都由Spring框架来完成。实际上,这也体现了Spring框架的扩展性,也就是在不需要修改任何代码的情况下,扩展新的事件和监听。
# 模板模式在Spring中的应用
刚刚讲的是观察者模式在Spring中的应用,现在我们再讲下模板模式。
我们来看下一下经常在面试中被问到的一个问题:请你说下SpringBean的创建过程包含哪些主要的步骤。这其中就涉及模板模式。它也体现了Spring的扩展性。利用模板模式,Spring能让用户定制Bean的创建过程。
SpringBean的创建过程,可以大致分为两大步:对象的创建和对象的初始化。
对象的创建是通过反射来动态生成对象,而不是new方法。不管是哪种方式,说白了,总归还是调用构造函数来生成对象,没有什么特殊的。对象的初始化有两种实现方式。一种是在类中自定义一个初始化函数,并且通过配置文件,显式地告知Spring,哪个函数是初始化函数。我举了一个例子解释一下。如下所示,在配置文件中,我们通过init-method属性来指定初始化函数。
public class DemoClass {
//...
public void initDemo() {
//...初始化..
}
}
// 配置:需要通过init-method显式地指定初始化方法
<bean id="demoBean" class="com.xzg.cd.DemoClass" init-method="initDemo"></bean>
2
3
4
5
6
7
8
9
10
11
这种初始化方式有一个缺点,初始化函数并不固定,由用户随意定义,这就需要Spring通过反射,在运行时动态地调用这个初始化函数。而反射又会影响代码执行的性能,那有没有替代方案呢?
Spring提供了另外一个定义初始化函数的方法,那就是让类实现Initializingbean接口。这个接口包含一个固定的初始化函数定义(afterPropertiesSet()函数)。Spring在初始化Bean的时候,可以直接通过bean.afterPropertiesSet()的方式,调用Bean对象上的这个函数,而不需要使用反射来调用了。我举个例子解释一下,代码如下所示。
public class DemoClass implements InitializingBean{
@Override
public void afterPropertiesSet() throws Exception {
//...初始化...
}
}
// 配置:不需要显式地指定初始化方法
<bean id="demoBean" class="com.xzg.cd.DemoClass"></bean>
2
3
4
5
6
7
8
9
10
尽管这种实现方式不会用到反射,执行效率提高了,但业务代码(DemoClass)跟框架代码(InitializingBean)耦合在了一起。框架代码侵入到了业务代码中,替换框架的成本就变高了。所以,我并不是太推荐这种写法。
实际上,在Spring对Bean整个生命周期的管理中,还有一个跟初始化相对应的过程,那就是Bean的销毁过程。我们知道,在Java中,对象的回收是通过JVM来自动完成的。但是,我们可以在将Bean正式交给JVM垃圾回收前,执行一些销毁操作(比如关闭文件句柄等等)。
销毁过程跟初始化过程非常相似,也有两种实现方式。一种是通过配置destroy-method指定类中的销毁函数,另一种是让类实现DisposableBean接口。因为destroy-method、DisposableBean跟init-method、InitializingBean非常相似,所以,这部分我们就不详细讲解了,你可以自行研究下。
实际上,Spring针对对象的初始化过程,还做了进一步的细化,将它拆分成了三个小步骤:初始化前置操作、初始化、初始化后置操作。其中,中间的初始化操作就是我们刚刚讲的那部分,初始化的前置和后置操作,定义在接口BeanPostProcessor中。BeanPostProcessor的接口定义如下所示:
public interface BeanPostProcessor {
Object postProcessBeforeInitialization(Object var1, String var2) throws BeansException;
Object postProcessAfterInitialization(Object var1, String var2) throws BeansException;
}
2
3
4
5
6
我们再来看下,如何通过BeanPostProcessor来定义初始化前置和后置操作?
我们只需要定义一个实现了BeanPostProcessor接口的处理器类,并在配置文件中像配置普通Bean一样去配置就可以了。Spring中的ApplicationContext会自动检测在配置文件中实现了BeanPostProcessor接口的所有Bean,并把它们注册到BeanPostProcessor处理器列表中。在Spring容器创建Bean的过程中,Spring会逐一去调用这些处理器。
通过上面的分析,我们基本上弄清楚了SpringBean的整个生命周期(创建加销毁)。针对这个过程,我画了一张图,你可以结合着刚刚讲解一块看下。
不过,你可能会说,这里哪里用到了模板模式啊?模板模式不是需要定义一个包含模板方法的抽象模板类,以及定义子类实现模板方法吗?
实际上,这里的模板模式的实现,并不是标准的抽象类的实现方式,而是有点类似我们前面讲到的Callback回调的实现方式,也就是将要执行的函数封装成对象(比如,初始化方法封装成InitializingBean对象),传递给模板(BeanFactory)来执行。
# 重点回顾
好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要重点掌握的内容。
今天我讲到了Spring中用到的两种支持扩展的设计模式,观察者模式和模板模式。
其中,观察者模式在Java、GoogleGuava、Spring中都有提供相应的实现代码。在平时的项目开发中,基于这些实现代码,我们可以轻松地实现一个观察者模式。
Java提供的框架比较简单,只包含java.util.Observable和java.util.Observer两个类。GoogleGuava提供的框架功能比较完善和强大,可以通过EventBus事件总线来实现观察者模式。Spring提供了观察者模式包含Event事件、Listener监听者、Publisher发送者三部分。事件发送到ApplicationContext中,然后,ApplicationConext将消息发送给事先注册好的监听者。
除此之外,我们还讲到模板模式在Spring中的一个典型应用,那就是Bean的创建过程。Bean的创建包含两个大的步骤,对象的创建和对象的初始化。其中,对象的初始化又可以分解为3个小的步骤:初始化前置操作、初始化、初始化后置操作。
# 课堂讨论
在GoogleGuava的EventBus实现中,被观察者发送消息到事件总线,事件总线根据消息的类型,将消息发送给可匹配的观察者。那在Spring提供的观察者模式的实现中,是否也支持按照消息类型匹配观察者呢?如果能,它是如何实现的?如果不能,你有什么方法可以让它支持吗?
欢迎留言和我分享你的想法。如果有收获,也欢迎你把这篇文章分享给你的朋友。
# 精选评论
点击查看
用反射获取的type
支持按照消息类型匹配观察者,最终调用 SimpleApplicationEventMulticaster 类的multicastEvent方法通过反射匹配类型。根据配置采用异步还是同步的监听方式。
public void multicastEvent(final ApplicationEvent event, @Nullable ResolvableType eventType) {
ResolvableType type = (eventType != null ? eventType : resolveDefaultEventType(event));
Executor executor = getTaskExecutor();
for (ApplicationListener<?> listener : getApplicationListeners(event, type)) {
if (executor != null) {
executor.execute(() -> invokeListener(listener, event));
}
else {
invokeListener(listener, event);
}
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
定义了一个bean同时实现了InitializingBean, BeanPostProcessor, DisposableBean,发现方法跟老师最后一张图的不一致:
1、顺序是构造器、afterPropertiesSet、postProcessBeforeInitialization、postProcessAfterInitialization、destroy
2、postProcessBeforeInitialization、postProcessAfterInitialization这两个方法交替执行了N次
2
3
看了下源码,其流程可以从
图片: https://uploader.shimo.im/f/fZuIVWFIlWQnnRFq.png
推送Event时候,去发送Event开始走
主要就是这个
在此方法中,会调用getApplicationListeners(event,eventType)函数
图片: https://uploader.shimo.im/f/3mZZvSBhmc8CXLnx.png
在这个方法中,会获取到对应的所有监听者,如何获取到的,会先通过一个锁来从一个名为retrieverCache的map中尝试获取到对应的监听者
如果拿不到,会进入到retrieveApplicationListeners()这个函数之中
图片: https://uploader.shimo.im/f/GFvS2QEKGlMctZrc.png
在这个方法中,会在add返回的结果的时候,会调用一个方法supportsEvent(),
这才是真正进行匹配的方法
图片: https://uploader.shimo.im/f/102Ia9ToqIw5ZOyq.png
匹配事件和源类型是否一致,一致才算做可以发送
2
3
4
5
6
7
8
9
10
11
12
13