装饰器模式:通过剖析JavaIO类库源码学习装饰器模式
# 50 | 装饰器模式:通过剖析Java IO类库源码学习装饰器模式
上一节课我们学习了桥接模式,桥接模式有两种理解方式。第一种理解方式是“将抽象和实现解耦,让它们能独立开发”。这种理解方式比较特别,应用场景也不多。另一种理解方式更加简单,类似“组合优于继承”设计原则,这种理解方式更加通用,应用场景比较多。不管是哪种理解方式,它们的代码结构都是相同的,都是一种类之间的组合关系。
今天,我们通过剖析JavaIO类的设计思想,再学习一种新的结构型模式,装饰器模式。它的代码结构跟桥接模式非常相似,不过,要解决的问题却大不相同。
话不多说,让我们正式开始今天的学习吧!
# JavaIO类的“奇怪”用法
JavaIO类库非常庞大和复杂,有几十个类,负责IO数据的读取和写入。如果对JavaIO类做一下分类,我们可以从下面两个维度将它划分为四类。具体如下所示:
针对不同的读取和写入场景,JavaIO又在这四个父类基础之上,扩展出了很多子类。具体如下所示:
在我初学Java的时候,曾经对JavaIO的一些用法产生过很大疑惑,比如下面这样一段代码。我们打开文件test.txt,从中读取数据。其中,InputStream是一个抽象类,FileInputStream是专门用来读取文件流的子类。BufferedInputStream是一个支持带缓存功能的数据读取类,可以提高数据读取的效率。
InputStream in = new FileInputStream("/user/wangzheng/test.txt");
InputStream bin = new BufferedInputStream(in);
byte[] data = new byte[128];
while (bin.read(data) != -1) {
//...
}
2
3
4
5
6
7
初看上面的代码,我们会觉得JavaIO的用法比较麻烦,需要先创建一个FileInputStream对象,然后再传递给BufferedInputStream对象来使用。我在想,JavaIO为什么不设计一个继承FileInputStream并且支持缓存的BufferedFileInputStream类呢?这样我们就可以像下面的代码中这样,直接创建一个BufferedFileInputStream类对象,打开文件读取数据,用起来岂不是更加简单?
InputStream bin = new BufferedFileInputStream("/user/wangzheng/test.txt");
byte[] data = new byte[128];
while (bin.read(data) != -1) {
//...
}
2
3
4
5
6
# 基于继承的设计方案
如果InputStream只有一个子类FileInputStream的话,那我们在FileInputStream基础之上,再设计一个孙子类BufferedFileInputStream,也算是可以接受的,毕竟继承结构还算简单。但实际上,继承InputStream的子类有很多。我们需要给每一个InputStream的子类,再继续派生支持缓存读取的子类。
除了支持缓存读取之外,如果我们还需要对功能进行其他方面的增强,比如下面的DataInputStream类,支持按照基本数据类型(int、boolean、long等)来读取数据。
FileInputStream in = new FileInputStream("/user/wangzheng/test.txt");
DataInputStream din = new DataInputStream(in);
int data = din.readInt();
2
3
4
在这种情况下,如果我们继续按照继承的方式来实现的话,就需要再继续派生出DataFileInputStream、DataPipedInputStream等类。如果我们还需要既支持缓存、又支持按照基本类型读取数据的类,那就要再继续派生出BufferedDataFileInputStream、BufferedDataPipedInputStream等n多类。这还只是附加了两个增强功能,如果我们需要附加更多的增强功能,那就会导致组合爆炸,类继承结构变得无比复杂,代码既不好扩展,也不好维护。这也是我们在中讲的不推荐使用继承的原因。
# 基于装饰器模式的设计方案
在第10节中,我们还讲到“组合优于继承”,可以“使用组合来替代继承”。针对刚刚的继承结构过于复杂的问题,我们可以通过将继承关系改为组合关系来解决。下面的代码展示了JavaIO的这种设计思路。不过,我对代码做了简化,只抽象出了必要的代码结构,如果你感兴趣的话,可以直接去查看JDK源码。
public abstract class InputStream {
//...
public int read(byte b[]) throws IOException {
return read(b, 0, b.length);
}
public int read(byte b[], int off, int len) throws IOException {
//...
}
public long skip(long n) throws IOException {
//...
}
public int available() throws IOException {
return 0;
}
public void close() throws IOException {}
public synchronized void mark(int readlimit) {}
public synchronized void reset() throws IOException {
throw new IOException("mark/reset not supported");
}
public boolean markSupported() {
return false;
}
}
public class BufferedInputStream extends InputStream {
protected volatile InputStream in;
protected BufferedInputStream(InputStream in) {
this.in = in;
}
//...实现基于缓存的读数据接口...
}
public class DataInputStream extends InputStream {
protected volatile InputStream in;
protected DataInputStream(InputStream in) {
this.in = in;
}
//...实现读取基本类型数据的接口
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
看了上面的代码,你可能会问,那装饰器模式就是简单的“用组合替代继承”吗?当然不是。从JavaIO的设计来看,装饰器模式相对于简单的组合关系,还有两个比较特殊的地方。
第一个比较特殊的地方是:装饰器类和原始类继承同样的父类,这样我们可以对原始类“嵌套”多个装饰器类。比如,下面这样一段代码,我们对FileInputStream嵌套了两个装饰器类:BufferedInputStream和DataInputStream,让它既支持缓存读取,又支持按照基本数据类型来读取数据。
InputStream in = new FileInputStream("/user/wangzheng/test.txt");
InputStream bin = new BufferedInputStream(in);
DataInputStream din = new DataInputStream(bin);
int data = din.readInt();
2
3
4
5
第二个比较特殊的地方是:装饰器类是对功能的增强,这也是装饰器模式应用场景的一个重要特点。实际上,符合“组合关系”这种代码结构的设计模式有很多,比如之前讲过的代理模式、桥接模式,还有现在的装饰器模式。尽管它们的代码结构很相似,但是每种设计模式的意图是不同的。就拿比较相似的代理模式和装饰器模式来说吧,代理模式中,代理类附加的是跟原始类无关的功能,而在装饰器模式中,装饰器类附加的是跟原始类相关的增强功能。
// 代理模式的代码结构(下面的接口也可以替换成抽象类)
public interface IA {
void f();
}
public class A impelements IA {
public void f() { //... }
}
public class AProxy impements IA {
private IA a;
public AProxy(IA a) {
this.a = a;
}
public void f() {
// 新添加的代理逻辑
a.f();
// 新添加的代理逻辑
}
}
// 装饰器模式的代码结构(下面的接口也可以替换成抽象类)
public interface IA {
void f();
}
public class A impelements IA {
public void f() { //... }
}
public class ADecorator impements IA {
private IA a;
public ADecorator(IA a) {
this.a = a;
}
public void f() {
// 功能增强代码
a.f();
// 功能增强代码
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
实际上,如果去查看JDK的源码,你会发现,BufferedInputStream、DataInputStream并非继承自InputStream,而是另外一个叫FilterInputStream的类。那这又是出于什么样的设计意图,才引入这样一个类呢?
我们再重新来看一下BufferedInputStream类的代码。InputStream是一个抽象类而非接口,而且它的大部分函数(比如read()、available())都有默认实现,按理来说,我们只需要在BufferedInputStream类中重新实现那些需要增加缓存功能的函数就可以了,其他函数继承InputStream的默认实现。但实际上,这样做是行不通的。
对于即便是不需要增加缓存功能的函数来说,BufferedInputStream还是必须把它重新实现一遍,简单包裹对InputStream对象的函数调用。具体的代码示例如下所示。如果不重新实现,那BufferedInputStream类就无法将最终读取数据的任务,委托给传递进来的InputStream对象来完成。这一部分稍微有点不好理解,你自己多思考一下。
public class BufferedInputStream extends InputStream {
protected volatile InputStream in;
protected BufferedInputStream(InputStream in) {
this.in = in;
}
// f()函数不需要增强,只是重新调用一下InputStream in对象的f()
public void f() {
in.f();
}
}
2
3
4
5
6
7
8
9
10
11
12
13
实际上,DataInputStream也存在跟BufferedInputStream同样的问题。为了避免代码重复,JavaIO抽象出了一个装饰器父类FilterInputStream,代码实现如下所示。InputStream的所有的装饰器类(BufferedInputStream、DataInputStream)都继承自这个装饰器父类。这样,装饰器类只需要实现它需要增强的方法就可以了,其他方法继承装饰器父类的默认实现。
public class FilterInputStream extends InputStream {
protected volatile InputStream in;
protected FilterInputStream(InputStream in) {
this.in = in;
}
public int read() throws IOException {
return in.read();
}
public int read(byte b[]) throws IOException {
return read(b, 0, b.length);
}
public int read(byte b[], int off, int len) throws IOException {
return in.read(b, off, len);
}
public long skip(long n) throws IOException {
return in.skip(n);
}
public int available() throws IOException {
return in.available();
}
public void close() throws IOException {
in.close();
}
public synchronized void mark(int readlimit) {
in.mark(readlimit);
}
public synchronized void reset() throws IOException {
in.reset();
}
public boolean markSupported() {
return in.markSupported();
}
}
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# 重点回顾
好了,今天的内容到此就讲完了。我们一块来总结回顾一下,你需要重点掌握的内容。
装饰器模式主要解决继承关系过于复杂的问题,通过组合来替代继承。它主要的作用是给原始类添加增强功能。这也是判断是否该用装饰器模式的一个重要的依据。除此之外,装饰器模式还有一个特点,那就是可以对原始类嵌套使用多个装饰器。为了满足这个应用场景,在设计的时候,装饰器类需要跟原始类继承相同的抽象类或者接口。
# 课堂讨论
在上节课中,我们讲到,可以通过代理模式给接口添加缓存功能。在这节课中,我们又通过装饰者模式给InputStream添加缓存读取数据功能。那对于“添加缓存”这个应用场景来说,我们到底是该用代理模式还是装饰器模式呢?你怎么看待这个问题?
欢迎留言和我分享你的思考,如果有收获,也欢迎你把这篇文章分享给你的朋友。
# 精选评论
点击查看
你是一个优秀的歌手,只会唱歌这一件事,不擅长找演唱机会,谈价钱,搭台,这些事情你可以找一个经纪人帮你搞定,经纪人帮你做好这些事情你就可以安稳的唱歌了,让经纪人做你不关心的事情这叫代理模式。
你老爱记错歌词,歌迷和媒体经常吐槽你没有认真对待演唱会,于是你想了一个办法,买个高端耳机,边唱边提醒你歌词,让你摆脱了忘歌词的诟病,高端耳机让你唱歌能力增强,提高了基础能力这叫装饰者模式。
2
对于添加缓存这个应用场景使用哪种模式,要看设计者的意图,如果设计者不需要用户关注是否使用缓存功能,要隐藏实现细节,也就是说用户只能看到和使用代理类,那么就使用proxy模式;反之,如果设计者需要用户自己决定是否使用缓存的功能,需要用户自己新建原始对象并动态添加缓存功能,那么就使用decorator模式。
对于无需Override的方法也要重写的理解:
虽然本身BufferedInputStream也是一个InputStream,但是实际上它本身不作为任何io通道的输入流,而传递进来的委托对象InputStream才能真正从某个“文件”(广义的文件,磁盘、网络等)读取数据的输入流。因此必须默认进行委托。
2
补充关于Proxy Pattern 和Decorator Pattern的一点区别:
Decorator关注为对象动态的添加功能, Proxy关注对象的信息隐藏及访问控制.
Decorator体现多态性, Proxy体现封装性.
reference:
https://stackoverflow.com/questions/18618779/differences-between-proxy-and-decorator-pattern
2
3
4
5
6
7
今天的课后题:
1.有意思,关于代理模式和装饰者模式,各自应用场景和区别刚好也想过。
1.代理模式和装饰者模式都是 代码增强这一件事的落地方案。前者个人认为偏重业务无关,高度抽象,和稳定性较高的场景(性能其实可以抛开不谈)。后者偏重业务相关,定制化诉求高,改动较频繁的场景。
2.缓存这件事一般都是高度抽象,全业务通用,基本不会改动的东西,所以一般也是采用代理模式,让业务开发从缓存代码的重复劳动中解放出来。但如果当前业务的缓存实现需要特殊化定制,需要揉入业务属性,那么就该采用装饰者模式。因为其定制性强,其他业务也用不着,而且业务是频繁变动的,所以改动的可能也大,相对于动代,装饰者在调整(修改和重组)代码这件事上显得更灵活。
2
3
4
5
6
// 代理模式的代码结构(下面的接口也可以替换成抽象类)
public interface IA {
void f();
}
public class A impelements IA {
public void f() { //... }
}
public class AProxy impements IA {
private IA a;
public AProxy(IA a) {
this.a = a;
}
public void f() {
// 新添加的代理逻辑
a.f();
// 新添加的代理逻辑
}
}
// 装饰器模式的代码结构(下面的接口也可以替换成抽象类)
public interface IA {
void f();
}
public class A impelements IA {
public void f() { //... }
}
public class ADecorator impements IA {
private IA a;
public ADecorator(IA a) {
this.a = a;
}
public void f() {
// 功能增强代码
a.f();
// 功能增强代码
}
}
老师 上面代码结构完全一样啊 不能因为 f() 中写的 逻辑不同 就说是两种模式吧
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
对于为什么中间要多继承一个FilterInputStream类,我的理解是这样的:
假如说BufferedInputStream类直接继承自InputStream类且没有进行重写,只进行了装饰
创建一个InputStream is = new BufferedInputStream(new FileInputStream(FilePath));
此时调用is的没有重写方法(如read方法)时调用的是InputStream类中的read方法,而不是FileInputStream中的read方法,这样的结果不是我们想要的。所以要将方法再包装一次,从而有FilterInputStream类,也是避免代码的重复,多个装饰器只用写一遍包装代码即可。
2
3
4
打卡 设计模式-装饰器模式
装饰器模式是一种类似于代理模式的结构型模式。主要意图是增强原始类的功能,可以实现多个功能的增强(即不同的功能单独一个类维护,使用该模式将其功能组合起来)。该模式主要是为了解决为了实现某些功能导致子类膨胀的问题。个人觉得主要体现了单一职责、组合优先于继承原则。主要应用场景有Java IO 流设计。但是有个疑惑,在Reader和Writer体系结构的设计中,并没有像InputStream和OutputStream那样设计一个过滤流类,而BufferedReader等直接继承了Reader。按照作者本文的分析,字符输入流直接跳过了使用中间类来继承的步骤,这样的设计又该如何理解?
对于课堂讨论,我觉得应该使用装饰器模式,因为“添加缓存”这个功能跟原始功能是由直接关系的。而代理模式所面向主要是将框架代码与业务代码解耦合。
2
3
我觉得应该用代理模式,当然这个是要看场景的。代理模式是在原有功能之外增加了其他的能力,而装饰器模式则在原功能的基础上增加额外的能力。一个是增加,一个是增强,就好比一个是在手机上增加了一个摄像头用于拍照,而另一个则是在拍照这个功能的基础上把像素从800W提升到1600W。我觉得通过这样的方式区分的话,大家互相沟通起来理解会统一一些。
看业务场景,如果只是针对某个类的某一个对象,添加缓存,那么就使用装饰模式。如果是针对这个类的所有对象,添加缓存。那么就使用代理模式
我觉得代理和装饰器区别还是很明显的。更加值得讨论的是桥接模式和装饰器模式的区别。桥接模式也是和装饰器类似,先实现好接口,把具体功能委托给内部组合进去的类去做,这点和装饰器模式很像。然后这三中模式的代码结构基本一致,这个真的太容易让新手混淆得稀里糊涂的。。。。。
个人理解装饰者模式解决了一揽子实现之间的任意组合关系以达到具体想要的效果,这种设计避免了继承层次深结构混乱等问题,是多态的一大应用
一、定义:
对现有的类对象进行包裹和封装,以期望在不改变类对象及其类定义的情况下,为对象添加额外功能。
二、使用场景:
装饰器模式主要解决继承关系过于复杂的问题,通过组合来替代继承。需要动态的为同一类的不同对象加以修饰以添加新的功能。
三、实现方式:
1)实现一个装饰器类,原始类对象通过依赖注入到装饰器类中,在装饰类中进行功能增强;
2)装饰器类和原始类继承相同的接口或是抽象类,这样可以对原始类嵌套多个装饰器(JAVA IO);
四、 装饰器模式和代理模式的区别
对于是设计成或是称作为装饰器还是代理模式,需要看设计的意图。如果需要设计成在原始类上的功能对用户隐藏,那也就是说用户只能看到和使用代理类,那么就使用proxy模式;反之需要用户自己新建原始对象,选择需不需要使用新增功能,就使用装饰器模式。
2
3
4
5
6
7
8
9
10
11
12
对于 “如果不重新实现,那 BufferedInputStream 类就无法将最终读取数据的任务,委托给传递进来的 InputStream 对象来完成。”,我的理解是:
假设 BufferedInputStream 类直接继承 InputStream。
现在有一个场景,我们创建一个 FileInputStream 对象,且该类重写了父类 InputStream 的某个方法 f()。接着我们用 BufferedInputStream 类来修饰 FileInputStream 类,并且没有为加强功能而重写父类 InputStream 的 f() 方法。这时候我们执行的就是 InputStream 对象的 f() 方法,而不是 BufferedInputStream 的 f() 方法。因为我们使用的是组合(不是继承),f 方法中完全没有和 BufferedInputStream 相关的代码。
2
3
4
5